

p°k®½° éMA±U pA ²jB–UwA BM Bµ°®« ºnBñTwj

±®« ºBµ(²oš—) ©T½C ³M o½±~U ¬j°p—A -1
°®« ºBµ ©U½C ³M (! ð¦ñ{) ¬±ñ½C ¬j°q—A -2

(!q¼a ³ªµ ¬joŸ »wnB— ³M ¬Ak®ª›Àî ºAoM , ³]±U ¥MB›) °®« S¯±— o¼¼’U -3
 ©Uv¼w º±®« ºBµ(²oš—) ©T½C ”me -4

 ©Tv¼w º±¯« ³M ©T½C ¬joŸ ³—BƒA -5
Menu_MouseOver ºpBw ³¼L{ -6

 (Transparent) ”B–{ ºBµ±®« jB\½A -7
p°k¯½° System Tray nj ±®« jB\½A -8

(Pop Up) ²k®´] ºBµ±®« -9

±®« ºBµ(²oš—) ©T½C ³M o½±~U ¬j°p—A -1

Option Explicit

Private Declare Function GetMenu Lib "user32" (ByVal hWnd As Long) _
As Long
Private Declare Function GetMenuItemID Lib "user32" (_
 ByVal hMenu As Long, ByVal nPos As Long) As Long
Private Declare Function GetSubMenu Lib "user32" (_
 ByVal hMenu As Long, ByVal nPos As Long) As Long

Private Declare Function ModifyMenu Lib "user32" Alias _
"ModifyMenuA" (ByVal hMenu As Long, ByVal nPosition As Long, _
 ByVal wFlags As Long, ByVal wIDNewItem As Long, _
 ByVal lpString As Any) As Long

Const MF_BITMAP = 4
Const MF_CHECKED = 8

Private Sub Form_Load()

 Dim hMenu As Long, hSubMenu As Long, lngID As Long

 hMenu = GetMenu(Me.hWnd)
 hSubMenu = GetSubMenu(hMenu, 0)

 picBitmaps(0).Picture = picBitmaps(0).Image
 lngID = GetMenuItemID(hSubMenu, 0)
 Call ModifyMenu(hMenu, lngID, MF_BITMAP, lngID, _
 CLng(picBitmaps(0).Picture))

 picBitmaps(1).Picture = picBitmaps(1).Image
 lngID = GetMenuItemID(hSubMenu, 1)
 Call ModifyMenu(hMenu, lngID, MF_BITMAP, lngID, _
 CLng(picBitmaps(1).Picture))

 picBitmaps(2).Picture = picBitmaps(2).Image
 lngID = GetMenuItemID(hSubMenu, 2)
 Call ModifyMenu(hMenu, lngID, MF_BITMAP, lngID, _
 CLng(picBitmaps(2).Picture))

End Sub

Private Sub mnuBitmap1_Click()
 mnuBitmap1.Checked = Not mnuBitmap1.Checked
End Sub

Private Sub mnuBitmapAfsluiten_Click()
 End
End Sub

°®« ºBµ ©U½C ³M (! ð¦ñ{) ¬±ñ½C ¬j°q—A -2

Option Explicit

' This sample shows you how to add bitmaps to your
' menu items. First, you must retrieve the VB menu handle
' with the GetMenu API call. Then, you set the Unchecked and
' Checked bitmaps (I don't differentiate between the two
' with this example - usually you would put a checkmark in
' the bitmap and use that for Checked).
'
' Note that the Picture property of an Image control (or
' a Picture control) is the Bitmap Handle, this the Image
' controls can be used like a bitmap resource.
'
' I also have one sub menu so that you can see how getting
' submenu handles and item positions works.

Private Declare Function GetMenu Lib "user32" _
 (ByVal hwnd As Long) As Long

Private Declare Function GetSubMenu Lib "user32" _
 (ByVal hMenu As Long, ByVal nPos As Long) As Long

Private Declare Function SetMenuItemBitmaps Lib "user32" _
 (ByVal hMenu As Long, ByVal nPosition As Long, _
 ByVal wFlags As Long, _
 ByVal hBitmapUnchecked As Long, ByVal hBitmapChecked As Long) _
 As Long

Const MF_BYPOSITION = &H400&

Private Sub Form_Load()
 Dim mHandle As Long, lRet As Long, sHandle As Long, _
 sHandle2 As Long
 mHandle = GetMenu(hwnd)
 sHandle = GetSubMenu(mHandle, 0)
 lRet = SetMenuItemBitmaps(sHandle, 0, MF_BYPOSITION, _
 imOpen.Picture, imOpen.Picture)
 lRet = SetMenuItemBitmaps(sHandle, 1, MF_BYPOSITION, _
 imSave.Picture, imSave.Picture)
 lRet = SetMenuItemBitmaps(sHandle, 3, MF_BYPOSITION, _
 imPrint.Picture, imPrint.Picture)
 lRet = SetMenuItemBitmaps(sHandle, 4, MF_BYPOSITION, _
 imPrintSetup.Picture, imPrintSetup.Picture)
 sHandle = GetSubMenu(mHandle, 1)
 sHandle2 = GetSubMenu(sHandle, 0)
 lRet = SetMenuItemBitmaps(sHandle2, 0, MF_BYPOSITION, _
 imCopy.Picture, imCopy.Picture)
End Sub

(!q¼a ³ªµ ¬joŸ »wnB— ³M ¬Ak®ª›Àî ºAoM , ³]±U ¥MB›) °®« S¯±— o¼¼’U -3

Option Explicit

DefLng A-Z

Const MFT_STRING = 0

Type RECT
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
End Type

Type Size
 cx As Long
 cy As Long
End Type

'MENUITEMINFO
Public Type MENUITEMINFO
 cbSize As Long
 fMask As Long
 fType As Long
 fState As Long
 wID As Long
 hSubMenu As Long
 hbmpChecked As Long
 hbmpUnchecked As Long
 dwItemData As Long
 dwTypeData As String
 cch As Long
End Type

' MEASUREITEMSTRUCT for ownerdraw
Type MEASUREITEMSTRUCT
 CtlType As Long
 CtlID As Long
 itemID As Long
 itemWidth As Long
 itemHeight As Long
 itemData As Long
End Type

' DRAWITEMSTRUCT for ownerdraw
Type DRAWITEMSTRUCT
 CtlType As Long
 CtlID As Long
 itemID As Long
 itemAction As Long
 itemState As Long
 hwndItem As Long
 hdc As Long
 rcItem As RECT
 itemData As Long
End Type

Public Declare Function GetMenu Lib "user32" _
 (ByVal hWnd As Long) As Long

Public Declare Function GetSubMenu Lib "user32" _
 (ByVal hMenu As Long, ByVal nPos As Long) As Long

Public Declare Function GetMenuItemCount Lib "user32" _
 (ByVal hMenu As Long) As Long

Public Declare Function GetMenuItemInfo Lib "user32" _
 Alias "GetMenuItemInfoA" _
 (ByVal hMenu As Long, ByVal un As Long, _
 ByVal b As Boolean, lpmii As MENUITEMINFO) As Long

Declare Function GetMenuItemID Lib "user32" _
 (ByVal hMenu As Long, ByVal nPos As Long) As Long

Public Declare Function SetMenuItemInfo Lib "user32" _
 Alias "SetMenuItemInfoA" _
 (ByVal hMenu As Long, ByVal uItem As Long, _
 ByVal fByPosition As Long, lpmii As MENUITEMINFO) As Long

Declare Function AppendMenu Lib "user32" _
 Alias "AppendMenuA" (ByVal hMenu As Long, _
 ByVal wFlags As Long, ByVal wIDNewItem As Long, _
 ByVal lpNewItem As Any) As Long

Declare Function RemoveMenu Lib "user32" _
 (ByVal hMenu As Long, ByVal nPosition As Long, _
 ByVal wFlags As Long) As Long

Declare Function CreateFont Lib "gdi32" _
 Alias "CreateFontA" (ByVal H As Long, _
 ByVal W As Long, ByVal E As Long, ByVal O As Long, _
 ByVal W As Long, ByVal I As Long, ByVal U As Long, _
 ByVal S As Long, ByVal C As Long, ByVal OP As Long, _
 ByVal CP As Long, ByVal Q As Long, ByVal PAF As Long, _
 ByVal F As String) As Long

Declare Function DeleteObject Lib "gdi32" _
 (ByVal hObject As Long) As Long

'MENUITEMINFO
Public Const MIIM_STATE = &H1
Public Const MIIM_ID = &H2
Public Const MIIM_SUBMENU = &H4
Public Const MIIM_CHECKMARKS = &H8

Public Const MIIM_TYPE = &H10
Public Const MIIM_DATA = &H20

'menustyle
Public Const MF_BYCOMMAND = &H0&
Public Const MF_BYPOSITION = &H400&

Public Const MF_STRING = &H0&
Public Const MF_BITMAP = &H4&
Public Const MF_OWNERDRAW = &H100&

'textout style
Public Const ETO_OPAQUE = 2

' Owner draw state
Public Const ODS_SELECTED = &H1
Public Const ODS_GRAYED = &H2
Public Const ODS_DISABLED = &H4
Public Const ODS_CHECKED = &H8
Public Const ODS_FOCUS = &H10

'messages:
Public Const WM_COMMAND = &H111
Public Const WM_SYSCOMMAND = &H112
Public Const WM_MENUSELECT = &H11F
Public Const WM_LBUTTONUP = &H202
Public Const WM_MBUTTONUP = &H208
Public Const WM_RBUTTONUP = &H205
Public Const WM_USER = &H400
Public Const WM_CREATE = &H1
Public Const WM_DESTROY = &H2
Public Const WM_DRAWITEM = &H2B
Public Const WM_MEASUREITEM = &H2C
Public Const WM_SYSCOLORCHANGE = &H15

Declare Sub MemCopy Lib "kernel32" Alias _
 "RtlMoveMemory" (dest As Any, src As Any, _
 ByVal numbytes As Long)

Public Const GWL_WNDPROC = (-4)
Public Const GWL_USERDATA = (-21)

Declare Function CallWindowProc Lib "user32" _
 Alias "CallWindowProcA" _
 (ByVal lpPrevWndFunc As Long, _
 ByVal hWnd As Long, ByVal msg As Long, _
 ByVal wParam As Long, ByVal lParam As Long) As Long

Declare Function SetWindowLong Lib "user32" _
 Alias "SetWindowLongA" (ByVal hWnd As Long, _
 ByVal nIndex As Long, ByVal dwNewLong As Long) As Long

Declare Function TextOut Lib "gdi32" Alias "TextOutA" _
 (ByVal hdc As Long, ByVal x As Long, ByVal y As Long, _
 ByVal lpString As String, ByVal nCount As Long) As Long

Declare Function ExtTextOut Lib "gdi32" Alias _
 "ExtTextOutA" (ByVal hdc As Long, ByVal x As _
 Long, ByVal y As Long, ByVal wOptions As Long, _
 lpRect As RECT, ByVal lpString As String, _
 ByVal nCount As Long, lpDx As Long) As Long

Declare Function GetDC Lib "user32" _
 (ByVal hWnd As Long) As Long

Declare Function ReleaseDC Lib "user32" _
 (ByVal hWnd As Long, ByVal hdc As Long) As Long

Declare Function SelectObject Lib "gdi32" _
 (ByVal hdc As Long, ByVal hObject As Long) As Long

Declare Function SetBkColor Lib "gdi32" _
 (ByVal hdc As Long, ByVal crColor As Long) As Long

Declare Function SetTextColor Lib "gdi32" _
 (ByVal hdc As Long, ByVal crColor As Long) As Long

Declare Function GetSysColor Lib "user32" _
 (ByVal nIndex As Long) As Long

Declare Function GetTextExtentPoint Lib "gdi32" _
 Alias "GetTextExtentPointA" (ByVal hdc As Long, _
 ByVal lpszString As String, ByVal cbString As Long, _
 lpSize As Size) As Long

Public Const COLOR_MENU = 4
Public Const COLOR_MENUTEXT = 7
Public Const COLOR_HIGHLIGHT = 13
Public Const COLOR_HIGHLIGHTTEXT = 14
Public Const COLOR_GRAYTEXT = 17

'consts MenuItem IDs.
Public Const IDM_CHARACTER = 10
Public Const IDM_REGULAR = 11
Public Const IDM_BOLD = 12
Public Const IDM_ITALIC = 13
Public Const IDM_UNDERLINE = 14

Type myItemType
 cchItemText As Integer
 szItemText As String * 32
End Type

Public OldWindowProc
Public hMenu, hSubMenu
Public iNoOfMenuItems, MyItem() As myItemType
Public clrPrevText, clrPrevBkgnd
Public hfntPrev

Public Const ODT_MENU = 1
Public hFont As Long
Public Function NewWindowProc(ByVal hWnd As Long, _
 ByVal msg As Long, _
 ByVal wParam As Long, lParam As Long) As Long
 Dim mM As MEASUREITEMSTRUCT
 Dim dM As DRAWITEMSTRUCT
 Select Case msg
 Case WM_DRAWITEM
 MemCopy dM, lParam, Len(dM)
 If dM.CtlType = ODT_MENU Then
 OnDrawMenuItem hWnd, dM
 End If

 Case WM_MEASUREITEM
 MemCopy mM, lParam, Len(mM)
 If mM.CtlType = ODT_MENU Then
 mM = OnMeasureItem(hWnd, mM)
 MemCopy lParam, mM, Len(mM)
 End If
 End Select
 NewWindowProc = CallWindowProc(OldWindowProc, hWnd, msg, _
 wParam, VarPtr(lParam))
End Function

Sub CreateMenus(hWnd As Long)
 hMenu = GetMenu(hWnd)
 hFont = CreateFont(20, 0, 0, 0, 0, 0, 0, 0, 106, _
 0, 16, 0, 0, "IranSystem1")
 Dim iNoOfMenu%, iNoOfSubMenu%
 Dim iCounter1%, iCounter2%
 iNoOfMenu = GetMenuItemCount(hMenu)
 'iNoOfMenuItems

 '******************************
 ReDim MyItem(1 To 7)
 'Here I choose 7 since altogether there are 7 menuitems in
 'File & Edit menu. If u want can write a function to
 'findout the No. of menu items by extending the following
 'For Loop.
 '******************************
 If iNoOfMenu Then
 For iCounter1 = 0 To iNoOfMenu - 1
 CreateOwnerDrawMenus hMenu, iCounter1
 hSubMenu = GetSubMenu(hMenu, iCounter1)
 iNoOfSubMenu = GetMenuItemCount(hSubMenu)
 If iNoOfSubMenu Then
 For iCounter2 = 0 To iNoOfSubMenu - 1
 CreateOwnerDrawMenus hSubMenu, iCounter2
 Next iCounter2
 End If
 Next iCounter1
 End If
End Sub
Sub CreateOwnerDrawMenus(hdMenu As Long, iMenuID As Integer)
 Dim minfo As MENUITEMINFO, r As Long
 iNoOfMenuItems = iNoOfMenuItems + 1
 minfo.cbSize = Len(minfo)
 minfo.fMask = MIIM_TYPE
 minfo.fType = MFT_STRING
 minfo.dwTypeData = Space$(256)
 minfo.cch = Len(minfo.dwTypeData)
 'get menuitem data
 r = GetMenuItemInfo(hdMenu, iMenuID, True, minfo)
 'and save into user array
 MyItem(iNoOfMenuItems).cchItemText = minfo.cch 'menuitem length
 MyItem(iNoOfMenuItems).szItemText = Trim(minfo.dwTypeData) 'text
 'change menu type
 minfo.fType = MF_OWNERDRAW
 minfo.fMask = MIIM_TYPE Or MIIM_DATA
 minfo.dwItemData = iNoOfMenuItems
 'into MF_OWNERDRAW
 r = SetMenuItemInfo(hdMenu, iMenuID, True, minfo)
End Sub

Function OnMeasureItem(hWnd As Long, lpmis As MEASUREITEMSTRUCT) _
 As MEASUREITEMSTRUCT
 On Error GoTo E2
 Dim xM As MEASUREITEMSTRUCT, hfntOld As Long
 Dim S As Size, hdc As Long

 'find DC
 hdc = GetDC(hWnd)

 hfntOld = SelectObject(hdc, hFont)

 GetTextExtentPoint hdc, MyItem(lpmis.itemData).szItemText, _
 MyItem(lpmis.itemData).cchItemText, S

 'set menu item rect
 xM.itemWidth = S.cx + 10
 xM.itemHeight = S.cy

 SelectObject hdc, hfntOld
 ReleaseDC hWnd, hdc

 LSet OnMeasureItem = xM
 Exit Function
E2:
 Form1.Caption = lpmis.itemData
 Exit Function
End Function

Sub OnDrawMenuItem(hWnd As Long, lpdis As DRAWITEMSTRUCT)
 On Error GoTo E1
 Dim x, y

 'set the menuitem colors
 If (lpdis.itemState And ODS_SELECTED) Then 'if selected
 clrPrevText = SetTextColor(lpdis.hdc, _
 GetSysColor(COLOR_HIGHLIGHTTEXT))
 clrPrevBkgnd = SetBkColor(lpdis.hdc, _
 GetSysColor(COLOR_HIGHLIGHT))
 Else
 clrPrevText = SetTextColor(lpdis.hdc, _
 GetSysColor(COLOR_MENUTEXT))
 clrPrevBkgnd = SetBkColor(lpdis.hdc, GetSysColor(COLOR_MENU))
 End If

 'leave space for checkmark
 'may use GetMenuCheckMarkDimensions
 x = lpdis.rcItem.Left + 20
 y = lpdis.rcItem.Top

 hfntPrev = SelectObject(lpdis.hdc, hFont)

 ExtTextOut lpdis.hdc, x, y, ETO_OPAQUE, _
 lpdis.rcItem, Trim(" "), 1&, 0&

 TextOut lpdis.hdc, x, y, MyItem(lpdis.itemData).szItemText, _
 MyItem(lpdis.itemData).cchItemText
 'Form1.Caption = lpdis.itemData
 'may put some bitblt function here also.

 SelectObject lpdis.hdc, hfntPrev
 SetTextColor lpdis.hdc, clrPrevText

 SetBkColor lpdis.hdc, clrPrevBkgnd
 Exit Sub
E1:
 Form1.Caption = lpdis.itemData
 Exit Sub
End Sub
Sub OnDestroy()
 Dim r As Long
 'do some clean works
 Dim minfo As MENUITEMINFO, id As Integer
 Dim iNoOfMenu%, iNoOfSubMenu%
 Dim iCounter1%, iCounter2%
 iNoOfMenu = GetMenuItemCount(hMenu)
 'iMenuItemBound
 If iNoOfMenu Then
 For iCounter1 = 0 To iNoOfMenu - 1
 minfo.fMask = MIIM_DATA
 r = GetMenuItemInfo(hMenu, iCounter1, True, minfo)
 DeleteObject minfo.dwItemData
 r = SetMenuItemInfo(hMenu, iCounter1, True, minfo)
 hSubMenu = GetSubMenu(hMenu, iCounter1)
 iNoOfSubMenu = GetMenuItemCount(hSubMenu)
 If iNoOfSubMenu Then
 For iCounter2 = 0 To iNoOfSubMenu - 1
 minfo.fMask = MIIM_DATA
 r = GetMenuItemInfo(hSubMenu, iCounter2, _
 True, minfo)
 DeleteObject minfo.dwItemData
 r = SetMenuItemInfo(hSubMenu, _
 iCounter2, True, minfo)
 Next iCounter2
 End If
 Next iCounter1
 End If
 DeleteObject hFont
 Erase MyItem
End Sub

: ¤BX«

Option Explicit

Private Sub close_Click()
 MsgBox "close"
End Sub

Private Sub Form_Load()
 Call CreateMenus(Me.hWnd)
 'set Callback
 OldWindowProc = SetWindowLong(Me.hWnd, _
 GWL_WNDPROC, AddressOf NewWindowProc)
End Sub

Private Sub Form_Unload(Cancel As Integer)
 'do some clean work
 Call OnDestroy
End Sub

Private Sub mnuClose_Click()
 Unload Me
End Sub

:o¢½j »î±¯

Option Explicit

DefLng A-Z

Const MFT_STRING = 0

Type RECT
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
End Type

Type Size
 cx As Long
 cy As Long
End Type

'MENUITEMINFO
Public Type MENUITEMINFO

 cbSize As Long
 fMask As Long
 fType As Long
 fState As Long
 wID As Long
 hSubMenu As Long
 hbmpChecked As Long
 hbmpUnchecked As Long
 dwItemData As Long
 dwTypeData As String
 cch As Long
End Type

' MEASUREITEMSTRUCT for ownerdraw
Type MEASUREITEMSTRUCT
 CtlType As Long
 CtlID As Long
 itemID As Long
 itemWidth As Long
 itemHeight As Long
 itemData As Long
End Type

' DRAWITEMSTRUCT for ownerdraw
Type DRAWITEMSTRUCT
 CtlType As Long
 CtlID As Long
 itemID As Long
 itemAction As Long
 itemState As Long
 hwndItem As Long
 hdc As Long
 rcItem As RECT
 itemData As Long
End Type

Public Declare Function GetMenu Lib "user32" _
 (ByVal hwnd As Long) As Long

Public Declare Function GetSubMenu Lib "user32" _
 (ByVal hMenu As Long, ByVal nPos As Long) As Long

Public Declare Function GetMenuItemCount Lib "user32" _
 (ByVal hMenu As Long) As Long

Public Declare Function GetMenuItemInfo Lib "user32" _
 Alias "GetMenuItemInfoA" _
 (ByVal hMenu As Long, ByVal un As Long, _
 ByVal b As Boolean, lpmii As MENUITEMINFO) As Long

Declare Function GetMenuItemID Lib "user32" _
 (ByVal hMenu As Long, ByVal nPos As Long) As Long

Public Declare Function SetMenuItemInfo Lib "user32" _
 Alias "SetMenuItemInfoA" _
 (ByVal hMenu As Long, ByVal uItem As Long, _
 ByVal fByPosition As Long, lpmii As MENUITEMINFO) As Long

Declare Function AppendMenu Lib "user32" _
 Alias "AppendMenuA" (ByVal hMenu As Long, _
 ByVal wFlags As Long, ByVal wIDNewItem As Long, _

 ByVal lpNewItem As Any) As Long

Declare Function RemoveMenu Lib "user32" _
 (ByVal hMenu As Long, ByVal nPosition As Long, _
 ByVal wFlags As Long) As Long

Declare Function CreateFont Lib "gdi32" _
 Alias "CreateFontA" (ByVal H As Long, _
 ByVal W As Long, ByVal E As Long, ByVal O As Long, _
 ByVal W As Long, ByVal I As Long, ByVal U As Long, _
 ByVal S As Long, ByVal C As Long, ByVal OP As Long, _
 ByVal CP As Long, ByVal Q As Long, ByVal PAF As Long, _
 ByVal F As String) As Long

Declare Function DeleteObject Lib "gdi32" _
 (ByVal hObject As Long) As Long

'MENUITEMINFO
Public Const MIIM_STATE = &H1
Public Const MIIM_ID = &H2
Public Const MIIM_SUBMENU = &H4
Public Const MIIM_CHECKMARKS = &H8
Public Const MIIM_TYPE = &H10
Public Const MIIM_DATA = &H20

'menustyle
Public Const MF_BYCOMMAND = &H0&
Public Const MF_BYPOSITION = &H400&

Public Const MF_STRING = &H0&
Public Const MF_BITMAP = &H4&
Public Const MF_OWNERDRAW = &H100&

'textout style
Public Const ETO_OPAQUE = 2

' Owner draw state
Public Const ODS_SELECTED = &H1
Public Const ODS_GRAYED = &H2
Public Const ODS_DISABLED = &H4
Public Const ODS_CHECKED = &H8
Public Const ODS_FOCUS = &H10

'messages:
Public Const WM_COMMAND = &H111
Public Const WM_SYSCOMMAND = &H112
Public Const WM_MENUSELECT = &H11F
Public Const WM_LBUTTONUP = &H202
Public Const WM_MBUTTONUP = &H208
Public Const WM_RBUTTONUP = &H205
Public Const WM_USER = &H400
Public Const WM_CREATE = &H1
Public Const WM_DESTROY = &H2
Public Const WM_DRAWITEM = &H2B
Public Const WM_MEASUREITEM = &H2C
Public Const WM_SYSCOLORCHANGE = &H15

Declare Sub MemCopy Lib "kernel32" Alias _
 "RtlMoveMemory" (dest As Any, src As Any, _
 ByVal numbytes As Long)

Public Const GWL_WNDPROC = (-4)
Public Const GWL_USERDATA = (-21)

Declare Function CallWindowProc Lib "user32" _
 Alias "CallWindowProcA" _
 (ByVal lpPrevWndFunc As Long, _
 ByVal hwnd As Long, ByVal msg As Long, _
 ByVal wparam As Long, ByVal lparam As Long) As Long

Declare Function SetWindowLong Lib "user32" _
 Alias "SetWindowLongA" (ByVal hwnd As Long, _
 ByVal nIndex As Long, ByVal dwNewLong As Long) As Long

Declare Function TextOut Lib "gdi32" Alias "TextOutA" _
 (ByVal hdc As Long, ByVal x As Long, ByVal y As Long, _
 ByVal lpString As String, ByVal nCount As Long) As Long

Declare Function ExtTextOut Lib "gdi32" Alias _
 "ExtTextOutA" (ByVal hdc As Long, ByVal x As _
 Long, ByVal y As Long, ByVal wOptions As Long, _
 lpRect As RECT, ByVal lpString As String, _
 ByVal nCount As Long, lpDx As Long) As Long

Declare Function GetDC Lib "user32" _
 (ByVal hwnd As Long) As Long

Declare Function ReleaseDC Lib "user32" _
 (ByVal hwnd As Long, ByVal hdc As Long) As Long

Declare Function SelectObject Lib "gdi32" _
 (ByVal hdc As Long, ByVal hObject As Long) As Long

Declare Function SetBkColor Lib "gdi32" _
 (ByVal hdc As Long, ByVal crColor As Long) As Long

Declare Function SetTextColor Lib "gdi32" _
 (ByVal hdc As Long, ByVal crColor As Long) As Long

Declare Function GetSysColor Lib "user32" _
 (ByVal nIndex As Long) As Long

Declare Function GetTextExtentPoint Lib "gdi32" _
 Alias "GetTextExtentPointA" (ByVal hdc As Long, _
 ByVal lpszString As String, ByVal cbString As Long, _
 lpSize As Size) As Long

Public Const COLOR_MENU = 4
Public Const COLOR_MENUTEXT = 7
Public Const COLOR_HIGHLIGHT = 13
Public Const COLOR_HIGHLIGHTTEXT = 14
Public Const COLOR_GRAYTEXT = 17

'consts MenuItem IDs.
Public Const IDM_CHARACTER = 10
Public Const IDM_REGULAR = 11
Public Const IDM_BOLD = 12
Public Const IDM_ITALIC = 13
Public Const IDM_UNDERLINE = 14

Type myItemType
 hFont As Long

 cchItemText As Integer
 szItemText As String * 32
End Type

Public OldWindowProc
Public hMenu, hSubMenu
Public mnuItemCount, MyItem() As myItemType
Public clrPrevText, clrPrevBkgnd
Public hfntPrev

Private Declare Function BitBlt Lib "gdi32" (ByVal hDestDC As Long, _
 ByVal x As Long, ByVal y As Long, ByVal nWidth As Long, _
ByVal nHeight As Long, ByVal hSrcDC As Long, ByVal xSrc As Long, _
ByVal ySrc As Long, ByVal dwRop As Long) As Long
Private Const SRCCOPY = &HCC0020 ' (DWORD) dest = source

Public Function NewWindowProc(ByVal hwnd As Long, _
 ByVal msg As Long, ByVal wparam As Long, _
 lparam As Long) As Long

 Dim mM As MEASUREITEMSTRUCT
 Dim dM As DRAWITEMSTRUCT

 Select Case msg

 Case WM_DRAWITEM

 MemCopy dM, lparam, Len(dM)
 OnDrawMenuItem hwnd, dM

 Case WM_MEASUREITEM

 MemCopy mM, lparam, Len(mM)
 mM = OnMeasureItem(hwnd, mM)
 MemCopy lparam, mM, Len(mM)

 Case WM_COMMAND

 'Put your Menu Command here.

 Case WM_SYSCOLORCHANGE

 'Put your code here.

 Case Else

 End Select

NewWindowProc = CallWindowProc(OldWindowProc, _
hwnd, msg, wparam, VarPtr(lparam))

End Function

Sub CreateMenus(hwnd As Long)

 'get Menus
 hMenu = GetMenu(hwnd)
 hSubMenu = GetSubMenu(hMenu, 0)

 'remove original menu item

 RemoveMenu hSubMenu, 0, MF_BYPOSITION

 'creates string menus
 AppendMenu hSubMenu, MF_STRING, IDM_REGULAR, "Regular"
 AppendMenu hSubMenu, MF_STRING, IDM_BOLD, "Bold"
 AppendMenu hSubMenu, MF_STRING, IDM_ITALIC, "Italic"
 AppendMenu hSubMenu, MF_STRING, IDM_UNDERLINE, "Underline"

 'call to make OwnerDrawMenus
 CreateOwnerDrawMenus

End Sub
Sub CreateOwnerDrawMenus()

 Dim minfo As MENUITEMINFO, id As Integer

 'get the menuitem handle
 hSubMenu = GetSubMenu(GetMenu(Form1.hwnd), 0)
 mnuItemCount = GetMenuItemCount(hSubMenu)

 'ReDim usertype array for menuitems
 ReDim MyItem(0 To mnuItemCount - 1) As myItemType
 Dim r As Long

 'loop to fill array
 For id = 0 To mnuItemCount - 1
 minfo.cbSize = Len(minfo)
 minfo.fMask = MIIM_TYPE
 minfo.fType = MFT_STRING
 minfo.dwTypeData = Space$(256)
 minfo.cch = Len(minfo.dwTypeData)

 'get menuitem data
 r = GetMenuItemInfo(hSubMenu, id, True, minfo)

 'and save into user array
 MyItem(id).cchItemText = minfo.cch 'menuitem length
 MyItem(id).szItemText = Trim(minfo.dwTypeData) 'text
 MyItem(id).hFont = CreateMenuItemFont(id) 'font

 'change menu type
 minfo.fType = MF_OWNERDRAW
 minfo.fMask = MIIM_TYPE Or MIIM_DATA
 minfo.dwItemData = id

 'into MF_OWNERDRAW
 r = SetMenuItemInfo(hSubMenu, id, True, minfo)

 Next id

End Sub

Function OnMeasureItem(hwnd As Long, lpmis As MEASUREITEMSTRUCT) _
 As MEASUREITEMSTRUCT

 Dim xM As MEASUREITEMSTRUCT, hfntOld As Long
 Dim S As Size, hdc As Long

 'find DC

 hdc = GetDC(hwnd)

 hfntOld = SelectObject(hdc, MyItem(lpmis.itemData).hFont)

 GetTextExtentPoint hdc, MyItem(lpmis.itemData).szItemText, _
 MyItem(lpmis.itemData).cchItemText, S

 'set menu item rect
 xM.itemWidth = S.cx + 10
 xM.itemHeight = S.cy

 SelectObject hdc, hfntOld
 ReleaseDC hwnd, hdc

 LSet OnMeasureItem = xM

End Function

Sub OnDrawMenuItem(hwnd As Long, lpdis As DRAWITEMSTRUCT)

 Dim x, y

 'set the menuitem colors
 If (lpdis.itemState And ODS_SELECTED) Then 'if selected
' clrPrevText = SetTextColor(lpdis.hdc, _
 GetSysColor(COLOR_HIGHLIGHTTEXT))
' clrPrevBkgnd = SetBkColor(lpdis.hdc, _
 GetSysColor(COLOR_HIGHLIGHT))
 clrPrevBkgnd = SetBkColor(lpdis.hdc, vbRed)
 clrPrevBkgnd = SetBkColor(lpdis.hdc, vbGreen)
 Else
' clrPrevText = SetTextColor(lpdis.hdc, _
 GetSysColor(COLOR_MENUTEXT))
' clrPrevBkgnd = SetBkColor(lpdis.hdc, _
 GetSysColor(COLOR_MENU))
 clrPrevBkgnd = SetBkColor(lpdis.hdc, vbBlue)
 clrPrevBkgnd = SetBkColor(lpdis.hdc, vbYellow)
 End If

 'leave space for checkmark
 'may use GetMenuCheckMarkDimensions
 x = lpdis.rcItem.Left + 20
 y = lpdis.rcItem.Top

 hfntPrev = SelectObject(lpdis.hdc, MyItem(lpdis.itemData).hFont)

 ExtTextOut lpdis.hdc, x, y, ETO_OPAQUE, _
 lpdis.rcItem, Trim(" "), 1&, 0&

 TextOut lpdis.hdc, x, y, MyItem(lpdis.itemData).szItemText, _
 MyItem(lpdis.itemData).cchItemText

 ' Draw a picture.
 If (lpdis.itemState And ODS_SELECTED) Then 'if selected
 BitBlt lpdis.hdc, 0, y, Form1.Picture2.ScaleWidth, _
 Form1.Picture2.ScaleHeight, Form1.Picture2.hdc, _
 0, 0, SRCCOPY
 Else
 BitBlt lpdis.hdc, 0, y, Form1.Picture1.ScaleWidth, _
 Form1.Picture1.ScaleHeight, Form1.Picture1.hdc, 0, 0, SRCCOPY
 End If

 SelectObject lpdis.hdc, hfntPrev
 SetTextColor lpdis.hdc, clrPrevText
 SetBkColor lpdis.hdc, clrPrevBkgnd

End Sub
Function CreateMenuItemFont(uID As Integer) As Long
Dim Weight As Long
Dim use_italic As Long
Dim use_underline As Long
Dim use_strikethrough As Long

 Select Case uID + 11

 Case IDM_BOLD

 Weight = 700

 Case IDM_ITALIC

 use_italic = True

 Case IDM_UNDERLINE

 use_underline = True

 End Select

CreateMenuItemFont = CreateFont(30, 0, _
 0, 0, Weight, _
 use_italic, use_underline, _
 use_strikethrough, 136, 0, _
 16, 0, 0, "Times New Roman")

End Function

Sub OnDestroy()
Dim r As Long

 'do some clean works
 Dim minfo As MENUITEMINFO, id As Integer

 hSubMenu = GetSubMenu(GetMenu(Form1.hwnd), 0)
 mnuItemCount = GetMenuItemCount(hSubMenu)

 For id = 0 To mnuItemCount - 1
 minfo.fMask = MIIM_DATA

 r = GetMenuItemInfo(hSubMenu, id, True, minfo)

 DeleteObject minfo.dwItemData

 r = SetMenuItemInfo(hSubMenu, id, True, minfo)
 Next

 Erase MyItem

End Sub

: ¤BX«

Option Explicit

Private Sub Form_Load()

 Call CreateMenus(Me.hwnd)

 'set Callback
 OldWindowProc = SetWindowLong(Me.hwnd, _
 GWL_WNDPROC, AddressOf NewWindowProc)

End Sub

Private Sub Form_Unload(Cancel As Integer)

 'do some clean work
 Call OnDestroy

End Sub

©Uv¼w º±®« ºBµ(²oš—) ©T½C ”me -4

Public Const MF_BYPOSITION = &H400&
Public Declare Function RemoveMenu Lib "user32" _
 (ByVal hMenu As Long, _
 ByVal nPosition As Long, _
 ByVal wFlags As Long) As Long
Public Declare Function GetSystemMenu Lib "user32" _
 (ByVal hWND As Long, _
 ByVal bRevert As Long) As Long
Public Sub RemoveCloseButton(hWND As Long)
 Dim hSysMenu As Long
 hSysMenu = GetSystemMenu(hWND, 0)
 RemoveMenu hSysMenu, 6, MF_BYPOSITION
 RemoveMenu hSysMenu, 5, MF_BYPOSITION
End Sub

: ¤BX«

Private Sub Form_Load()
 RemoveCloseButton Me.hWND
End Sub

 ©Tv¼w º±¯« ³M ©T½C ¬joŸ ³—BƒA -5

Option Explicit

Declare Function GetMenu Lib "user32" (ByVal hwnd As Long) As Long
Declare Function GetSubMenu Lib "user32" (ByVal hMenu As Long, _
 ByVal nPos As Long) As Long
Declare Function ModifyMenu Lib "user32" Alias "ModifyMenuA" (_
 ByVal hMenu As Long, ByVal nPosition As Long , _
 ByVal wFlags As Long, ByVal wIDNewItem As Long, _
 ByVal lpString As String) As Long
Declare Function AppendMenu Lib "user32" Alias "AppendMenuA" (_
 ByVal hMenu As Long, ByVal wFlags As Long, _
 ByVal wIDNewItem As Long, ByVal lpNewItem As String) As Long
Declare Function CreatePopupMenu Lib "user32" () As Long

Public Const MF_BYPOSITION = &H400&
Public Const MF_POPUP = &H10&
Public Const MF_ENABLED = &H0&
Public Const MF_STRING = &H0&

Public OldWindowProc As Long

Declare Function CallWindowProc Lib "user32" Alias _
 "CallWindowProcA" (ByVal lpPrevWndFunc As Long, _
 ByVal hwnd As Long, ByVal msg As Long, _
ByVal wParam As Long, ByVal lParam As Long) As Long
Declare Function SetWindowLong Lib "user32" Alias _
 "SetWindowLongA" (ByVal hwnd As Long, ByVal nIndex As Long, _
 ByVal dwNewLong As Long) As Long

Public Const GWL_WNDPROC = (-4)
Public Const WM_USER = &H400

Public MsgNames As New Collection

Public Const WM_MENUSELECT = &H11F
Public Const WM_COMMAND = &H111

 Declare Function GetSystemMenu Lib "user32" (ByVal hwnd As Long, _
 ByVal bRevert As Long) As Long
Public Const WM_SYSCOMMAND = &H112
Public Const MF_SEPARATOR = &H800&
Public Const IDM_ABOUT = 1999
' ***
' Pass along all messages except the one that
' makes the context menu appear.
' ***
Public Function NewWindowProc(ByVal hwnd As Long, _

 ByVal msg As Long, _
 ByVal wParam As Long, ByVal lParam As Long) As Long
Const MIN_MENU = 1001
Const MAX_MENU = 1010

 If msg = WM_COMMAND Then
 MsgBox "Command ID" & Str$(wParam)
 If wParam >= MIN_MENU And _
 wParam <= MAX_MENU _
 Then Exit Function
 End If

 If msg = WM_SYSCOMMAND And _
 wParam = IDM_ABOUT _
 Then
 MsgBox "Show About dialog here"
 Exit Function
 End If

 NewWindowProc = CallWindowProc(_
 OldWindowProc, hwnd, msg, wParam, _
 lParam)
End Function

Public Function GetMainMenuStructure(frm As Form) As Integer
'MenuItem
Dim main_handle As Long
Dim submenu As MenuItem
Dim i As Integer
Dim num As Integer

 ' Get the main menu item.
 main_handle = GetMenu(frm.hwnd)

 i = 0
 Do
 submenu = New MenuItem
 submenu.GetMenuStructure frm.hwnd
 i = i + 1
 Loop

' GetMenuItems
'
' Dim hFormMenu As Long
'Dim hSubMenu2 As Long
'Dim hSubMenu2List As Long
'Dim iCounter As Integer
'Dim hSystemMenu As Long
'
' ' Get the handle to the Menu on the
' ' current form
' hFormMenu = GetMenu(Me.hWnd)

End Function

MenuItem.cls

Option Explicit

Private Handle As Long
Private Caption As Long

Private Items() As MenuItem
Public Sub GetMenuStructure(New_Handle As Long)
Dim buf As String * 256
Dim length As Integer

 Handle = New_Handle

 length = GetMenuString(Handle, 1, buf, Len(buf), MF_BYPOSITION)
 m_Caption = Left$(buf, length)

End Sub

: ¤BX«

Option Explicit

Private Sub CreateMenus()
Dim hFormMenu As Long
Dim hSubMenu2 As Long
Dim hSubMenu2List As Long
Dim iCounter As Integer
Dim hSystemMenu As Long

 ' Get the handle to the Menu on the
 ' current form
 hFormMenu = GetMenu(Me.hwnd)

 ' Create a new popup menu to be used to
 ' place the required menu items in
 hSubMenu2List = CreatePopupMenu()

 ' Modify the second menu option on the Form
 ' Menu (denoted by the position 1 -
 ' menu positions start with 0 for the first
 ' item, so 1 specifies the second item).
 ' Specify that the Submenu option will
 ' activate the new popup menu just created
 ' (given the new popup menu handle). Note:
 ' The last string parameter in the function
 ' call specifies the new menu option caption
 ' so if it is to stay the same, make this
 ' string the same as the original caption
 ModifyMenu hFormMenu, 0, MF_BYPOSITION + MF_POPUP, _
 hSubMenu2List, "New Menu Item"

 ' Get the handle of the second menu
 ' option on the Form Menu (denoted by the
 ' position 1)
 hSubMenu2 = GetSubMenu(hFormMenu, 0)

 ' Add new items to the second menu option
 ' list ("Document List")
 For iCounter = 1 To 10
 Call AppendMenu(hSubMenu2, MF_STRING + MF_ENABLED, _
 1000 + iCounter, "Document " & CStr(iCounter))
 Next

 ' Add "About" to the system menu.
 hSystemMenu = GetSystemMenu(hwnd, False)
 AppendMenu hSystemMenu, MF_SEPARATOR, 0, ""
 AppendMenu hSystemMenu, MF_STRING + MF_ENABLED, _
 IDM_ABOUT, "About..."
End Sub
Private Sub Form_Load()
 CreateMenus

 ' Replace the default WindowProc.
 OldWindowProc = SetWindowLong(_
 hwnd, GWL_WNDPROC, _
 AddressOf NewWindowProc)
End Sub

Private Sub mnuFileExit_Click()
 Unload Me
End Sub

Menu_MouseOver ºpBw ³¼L{ -6

Option Explicit

Public Const URL = "http://www.vb-world.net"
Public Const email = "john@vb-world.net"

Public Declare Function ShellExecute Lib "shell32.dll" Alias
"ShellExecuteA" (ByVal hwnd As Long, ByVal lpOperation As String,
ByVal lpFile As String, ByVal lpParameters As String, ByVal
lpDirectory As String, ByVal nShowCmd As Long) As Long
Public Const SW_SHOWNORMAL = 1

Public Const MF_BYCOMMAND = &H0&
Public Const MF_BYPOSITION = &H400&
Public Const MF_POPUP = &H10&
Declare Function GetMenuString Lib "user32" Alias "GetMenuStringA"
(ByVal hMenu As Long, ByVal wIDItem As Long, ByVal lpString As
String, ByVal nMaxCount As Long, ByVal wFlag As Long) As Long

Private Declare Function SetWindowLong Lib "user32" Alias
"SetWindowLongA" (ByVal hwnd As Long, ByVal nIndex As Long, ByVal
dwNewLong As Long) As Long
Private Declare Function GetWindowLong Lib "user32" Alias
"GetWindowLongA" (ByVal hwnd As Long, ByVal nIndex As Long) As Long
Private Declare Function CallWindowProc Lib "user32" Alias
"CallWindowProcA" (ByVal lpPrevWndFunc As Long, ByVal hwnd As Long,
ByVal Msg As Long, ByVal wParam As Long, ByVal lParam As Long) As
Long
Declare Function GetSystemMenu Lib "user32" (ByVal hwnd As Long,
ByVal bRevert As Long) As Long

Private oldwndproc As Long
Private subclassedhWnd As Long

Public Const WM_MENUSELECT = &H11F
Public Const WM_NCDESTROY = &H82
Public Const GWL_WNDPROC = (-4)

Public Sub HookWindow(SubClassForm As Form)

' if something is already subclassed, don't subclass anything else
If oldwndproc <> 0 Then Exit Sub

http://www.vb-world.net
mailto:john@vb-world.net

subclassedhWnd = SubClassForm.hwnd

'Get the handle for the old window procedure so it can be replaced
and used later
oldwndproc = GetWindowLong(SubClassForm.hwnd, GWL_WNDPROC)

'Install custom window procedure for this window
SetWindowLong SubClassForm.hwnd, GWL_WNDPROC, AddressOf WndProc

End Sub

Private Function WndProc(ByVal hwnd As Long, ByVal Msg As Long, ByVal
wParam As Long, ByVal lParam As Long) As Long
'Does control want this message?
If Msg = WM_MENUSELECT Then

 ' This occurs when the menu is being closed
 If lParam = 0 Then Exit Function

 Dim MenuItemStr As String * 128
 Dim MenuHandle As Integer

 ' Get the low word from wParam: this contains the command ID or
position of the menu entry
 MenuHandle = GetLowWord(wParam)

 'If the highlighted menu is the top of a poup menu, pass menu item
by position
 If (GetHighWord(wParam) And MF_POPUP) = MF_POPUP Then

 'Get the caption of the menu item
 If GetMenuString(lParam, MenuHandle, MenuItemStr, 127,
MF_BYPOSITION) = 0 Then Exit Function

 Else ' Otherwise pass it by command ID

 'Get the caption of the menu item
 If GetMenuString(lParam, MenuHandle, MenuItemStr, 127,
MF_BYCOMMAND) = 0 Then Exit Function

 End If

 ' Add status bar message here!
 frmMenu.lblSelItem = Trim$(MenuItemStr)

Else

 'Otherwise, just call default window handler
 WndProc = CallWindowProc(oldwndproc, hwnd, Msg, wParam, lParam)

End If

'Unhook this window if it is being destroyed
If Msg = WM_NCDESTROY Then
 UnHookWindow
End If
End Function

Public Sub UnHookWindow()
' If there is nothing subclassed, there is nothing to unsubclass!

If oldwndproc = 0 Then Exit Sub

'Return to default window handler
SetWindowLong subclassedhWnd, GWL_WNDPROC, oldwndproc
oldwndproc = 0
End Sub

Public Function GetLowWord(Word As Long)
GetLowWord = CInt("&H" & Right$(Hex$(Word), 4))
End Function

Public Function GetHighWord(Word As Long)
GetHighWord = CInt("&H" & Left$(Hex$(Word), 4))
End Function

Public Sub gotoweb()
Dim Success As Long

Success = ShellExecute(0&, vbNullString, URL, vbNullString, "C:\",
SW_SHOWNORMAL)

End Sub

Public Sub sendemail()
Dim Success As Long

Success = ShellExecute(0&, vbNullString, "mailto:" & email,
vbNullString, "C:\", SW_SHOWNORMAL)

End Sub

: ¤BX«

Option Explicit

Private Sub Form_Load()
HookWindow Me
lblemail = email
lblurl = URL
End Sub

Private Sub lblemail_Click()
sendemail
End Sub

Private Sub lblurl_Click()
gotoweb
End Sub

Private Sub Form_Unload(Cancel As Integer)
UnHookWindow
End Sub

 (Transparent) ”B–{ ºBµ±®« jB\½A -7

Option Explicit

Private Type BLENDFUNCTION
 BlendOp As Byte
 BlendFlags As Byte
 SourceConstantAlpha As Byte
 AlphaFormat As Byte
End Type

Const AC_SRC_OVER = &H0
Dim I As Long, A As Long
Dim Opacity As Integer
Dim BF As BLENDFUNCTION, lBF As Long

Private Declare Function AlphaBlend Lib "msimg32.dll" _
(ByVal hdc As Long, ByVal lInt As Long, ByVal lInt As Long, _
 ByVal lInt As Long, ByVal lInt As Long, ByVal hdc As Long, _
 ByVal lInt As Long, ByVal lInt As Long, ByVal lInt As Long, _
 ByVal lInt As Long, ByVal BLENDFUNCT As Long) As Long

Private Declare Sub RtlMoveMemory Lib "kernel32.dll" _
 (Destination As Any, Source As Any, ByVal Length As Long)

Dim MnuFileOpened As Boolean

Private Sub Command1_Click()
If MnuFileOpened Then
Timer2.Enabled = True
MnuFileOpened = False
End If
Form1.BackColor = vbRed
Picture1.Cls
With BF
.BlendOp = AC_SRC_OVER
.BlendFlags = 0
.SourceConstantAlpha = Opacity
.AlphaFormat = 0

End With

RtlMoveMemory lBF, BF, 4

AlphaBlend Picture1.hdc, 0, 0, Picture1.ScaleWidth, _
 Picture1.ScaleHeight, Form1.hdc, 0, 0, _
 Form1.ScaleWidth, Form1.ScaleHeight, lBF

Picture1.Refresh
End Sub

Private Sub Command2_Click()
If MnuFileOpened Then
Timer2.Enabled = True
MnuFileOpened = False
End If
Form1.Picture = Image1.Picture
Picture1.Cls
With BF
.BlendOp = AC_SRC_OVER
.BlendFlags = 0
.SourceConstantAlpha = Opacity
.AlphaFormat = 0
End With
RtlMoveMemory lBF, BF, 4
AlphaBlend Picture1.hdc, 0, 0, Picture1.ScaleWidth, _
 Picture1.ScaleHeight, Form1.hdc, 0, 0, _
 Form1.ScaleWidth, Form1.ScaleHeight, lBF

Picture1.Refresh
End Sub

Private Sub Command3_Click()
If MnuFileOpened Then
Timer2.Enabled = True
MnuFileOpened = False
End If
Form1.BackColor = &H8000000F
Form1.Picture = Image2.Picture
Picture1.Cls
With BF
.BlendOp = AC_SRC_OVER
.BlendFlags = 0
.SourceConstantAlpha = Opacity
.AlphaFormat = 0
End With
RtlMoveMemory lBF, BF, 4
AlphaBlend Picture1.hdc, 0, 0, Picture1.ScaleWidth, _
 Picture1.ScaleHeight, Form1.hdc, 0, 0, _
 Form1.ScaleWidth, Form1.ScaleHeight, lBF

Picture1.Refresh
End Sub

Private Sub Form_Click()
If MnuFileOpened Then
Timer2.Enabled = True
MnuFileOpened = False
End If
End Sub

Private Sub Form_Load()
HScroll1.Value = 128
For I = 0 To MnuLab.Count - 1
MnuLab(I).Tag = MnuLab(I).Top
MnuLab(I).Visible = False
Next I
Picture1.Visible = True
Form1.AutoRedraw = True
Picture1.AutoRedraw = True
Form1.ScaleMode = vbPixels
Picture1.ScaleMode = vbPixels
With BF
.BlendOp = AC_SRC_OVER
.BlendFlags = 0
.SourceConstantAlpha = Opacity
.AlphaFormat = 0
End With
RtlMoveMemory lBF, BF, 4
AlphaBlend Picture1.hdc, 0, 0, Picture1.ScaleWidth _
, Picture1.ScaleHeight, Form1.hdc, 0, 0, Form1.ScaleWidth, _
Form1.ScaleHeight, lBF

End Sub

Private Sub Form_MouseMove(Button As Integer, Shift As Integer, _
 X As Single, Y As Single)
Label1.ForeColor = RGB(0, 0, 0)
For A = 0 To MnuLab.Count - 1
MnuLab(A).ForeColor = RGB(0, 0, 0)
Next A
End Sub

Private Sub Form_Unload(Cancel As Integer)
End
End Sub

Private Sub HScroll1_Change()
Label2.Caption = "Opacity Value" & Str$(HScroll1.Value)
Opacity = HScroll1.Value
Picture1.Cls
With BF
.BlendOp = AC_SRC_OVER
.BlendFlags = 0
.SourceConstantAlpha = Opacity
.AlphaFormat = 0
End With
RtlMoveMemory lBF, BF, 4
AlphaBlend Picture1.hdc, 0, 0, Picture1.ScaleWidth, _
Picture1.ScaleHeight, Form1.hdc, 0, 0, Form1.ScaleWidth, _
Form1.ScaleHeight, lBF

Picture1.Refresh
End Sub

Private Sub HScroll1_Scroll()
Label2.Caption = "Opacity Value" & Str$(HScroll1.Value)
Opacity = HScroll1.Value
Picture1.Cls
With BF
.BlendOp = AC_SRC_OVER
.BlendFlags = 0

.SourceConstantAlpha = Opacity

.AlphaFormat = 0
End With
RtlMoveMemory lBF, BF, 4

AlphaBlend Picture1.hdc, 0, 0, Picture1.ScaleWidth, _
Picture1.ScaleHeight, Form1.hdc, 0, 0, Form1.ScaleWidth, _
Form1.ScaleHeight, lBF

Picture1.Refresh
End Sub

Private Sub Label1_Click()
If Not MnuFileOpened Then
Picture2.Visible = True
Form1.AutoRedraw = True
Picture2.AutoRedraw = True
Form1.ScaleMode = vbPixels
Picture2.ScaleMode = vbPixels
With BF
.BlendOp = AC_SRC_OVER
.BlendFlags = 0
.SourceConstantAlpha = 255
.AlphaFormat = 0
End With
RtlMoveMemory lBF, BF, 4
AlphaBlend Picture2.hdc, 0, 0, Picture2.ScaleWidth, _
 Picture2.ScaleHeight, Form1.hdc, 0, 0, _
 Form1.ScaleWidth, Form1.ScaleHeight, lBF

Timer1.Enabled = True
MnuFileOpened = True
End If
End Sub

Private Sub Label1_MouseDown(Button As Integer, Shift As Integer, _
X As Single, Y As Single)
Label1.ForeColor = RGB(0, 255, 0)
If Label1.Top < 9 Then
Label1.Top = Label1.Top + 8
End If
End Sub

Private Sub Label1_MouseMove(Button As Integer, Shift As Integer, _
X As Single, Y As Single)
Label1.ForeColor = RGB(0, 255, 0)
For A = 0 To MnuLab.Count - 1
MnuLab(A).ForeColor = RGB(0, 0, 0)
Next A
End Sub

Private Sub Label1_MouseUp(Button As Integer, Shift As Integer, _
 X As Single, Y As Single)
Label1.ForeColor = RGB(0, 255, 0)
If Label1.Top > 14 Then
Label1.Top = Label1.Top - 8
End If
End Sub

Private Sub MnuLab_Click(Index As Integer)
Dim Ret As Long

Select Case Index
Case 0
MsgBox "New", vbOKOnly + vbInformation, "You Chose..."
Case 1
MsgBox "Open", vbOKOnly + vbInformation, "You Chose..."
Case 2
MsgBox "Save", vbOKOnly + vbInformation, "You Chose..."
Case 3
MsgBox "Print", vbOKOnly + vbInformation, "You Chose..."
Case 4
MsgBox "Quit", vbOKOnly + vbInformation, "You Chose..."
Ret = MsgBox("Do you want to quit?", vbYesNo + vbInformation,
"Quit?!?")
If Ret = vbYes Then
Unload Me
End If
End Select
End Sub

Private Sub MnuLab_MouseDown(Index As Integer, Button As Integer, _
 Shift As Integer, X As Single, Y As Single)
If MnuLab(Index).Top < MnuLab(Index).Tag + 1 Then
MnuLab(Index).Top = MnuLab(Index).Top + 4
End If
End Sub

Private Sub MnuLab_MouseMove(Index As Integer, Button As Integer, _
 Shift As Integer, X As Single, Y As Single)
For A = 0 To MnuLab.Count - 1
MnuLab(A).ForeColor = RGB(0, 0, 0)
Next A
MnuLab(Index).ForeColor = RGB(0, 255, 0)
End Sub

Private Sub MnuLab_MouseUp(Index As Integer, Button As Integer, _
 Shift As Integer, X As Single, Y As Single)
If MnuLab(Index).Top > MnuLab(Index).Tag + 1 Then
MnuLab(Index).Top = MnuLab(Index).Top - 4
End If
End Sub

Private Sub Picture1_Click()
If MnuFileOpened Then
Timer2.Enabled = True
MnuFileOpened = False
End If
End Sub

Private Sub Picture1_MouseMove(Button As Integer, Shift As Integer, _
 X As Single, Y As Single)
Label1.ForeColor = RGB(0, 0, 0)
For A = 0 To MnuLab.Count - 1
MnuLab(A).ForeColor = RGB(0, 0, 0)
Next A
End Sub

Private Sub Picture2_MouseMove(Button As Integer, Shift As Integer, _
 X As Single, Y As Single)
For A = 0 To MnuLab.Count - 1
MnuLab(A).ForeColor = RGB(0, 0, 0)
Next A

End Sub

Private Sub Timer1_Timer()
For I = 255 To Opacity Step -30
If I > Opacity - 1 Then
For A = 0 To MnuLab.Count - 1
MnuLab(A).Visible = True
Next A
End If
Timer1.Enabled = False
Picture2.Cls
With BF
.BlendOp = AC_SRC_OVER
.BlendFlags = 0
.SourceConstantAlpha = I
.AlphaFormat = 0
End With
RtlMoveMemory lBF, BF, 4
AlphaBlend Picture2.hdc, 0, 0, Picture2.ScaleWidth,
Picture2.ScaleHeight, Form1.hdc, 0, 0, Form1.ScaleWidth,
Form1.ScaleHeight, lBF
Picture2.Refresh
Next I
End Sub

Private Sub Timer2_Timer()
For I = Opacity To 255 Step 30
If I > 254 - 30 Then
Picture2.Visible = False
Timer2.Enabled = False
For A = 0 To MnuLab.Count - 1
MnuLab(A).Visible = False
Next A
End If
Picture2.Cls
With BF
.BlendOp = AC_SRC_OVER
.BlendFlags = 0
.SourceConstantAlpha = I
.AlphaFormat = 0
End With
RtlMoveMemory lBF, BF, 4
AlphaBlend Picture2.hdc, 0, 0, Picture2.ScaleWidth, _
 Picture2.ScaleHeight, Form1.hdc, 0, 0, _
 Form1.ScaleWidth, Form1.ScaleHeight, lBF

Picture2.Refresh
Next I
End Sub

p°k¯½° System Tray nj ±®« jB\½A -8

Public Const WM_LBUTTONDOWN = &H201
' // Tray notification definitions
Global IconIndex As Integer
Global FlashOn As Boolean

Type NOTIFYICONDATA

 cbSize As Long
 hwnd As Long
 uID As Long
 uFlags As Long
 uCallbackMessage As Long
 hIcon As Long
 szTip As String * 64
End Type

Public Const NIM_ADD = &H0
Public Const NIM_MODIFY = &H1
Public Const NIM_DELETE = &H2

Public Const NIF_MESSAGE = &H1
Public Const NIF_ICON = &H2
Public Const NIF_TIP = &H4

Declare Function Shell_NotifyIcon Lib "shell32.dll" Alias
"Shell_NotifyIconA" (ByVal dwMessage As Long, lpData As
NOTIFYICONDATA) As Long

Type SHFILEINFO
 hIcon As Long ' out: icon
 iIcon As Long ' out: icon index
 dwAttributes As Long ' out: SFGAO_ flags
 szDisplayName As String * 255 'MAX_PATH
' out: display name (or path)
 szTypeName As String * 80 ' out: type name
End Type

Public Const SHGFI_ICON = &H100 ' get icon
Public Const SHGFI_DISPLAYNAME = &H200 ' get display name
Public Const SHGFI_TYPENAME = &H400 ' get type name
Public Const SHGFI_ATTRIBUTES = &H800 ' get attributes
Public Const SHGFI_ICONLOCATION = &H1000 ' get icon location
Public Const SHGFI_EXETYPE = &H2000 ' return exe type
Public Const SHGFI_SYSICONINDEX = &H4000 ' get system icon index
Public Const SHGFI_LINKOVERLAY = &H8000 ' put a link overlay on icon
Public Const SHGFI_SELECTED = &H10000 ' show icon in selected state
Public Const SHGFI_LARGEICON = &H0 ' get large icon
Public Const SHGFI_SMALLICON = &H1 ' get small icon
Public Const SHGFI_OPENICON = &H2 ' get open icon
Public Const SHGFI_SHELLICONSIZE = &H4 ' get shell size icon
Public Const SHGFI_PIDL = &H8 ' pszPath is a pidl
Public Const SHGFI_USEFILEATTRIBUTES = &H10
' use passed dwFileAttribute

Declare Function SHGetFileInfo Lib "shell32.dll" Alias " _
 SHGetFileInfoA" (ByVal pszPath As String, _
 ByVal dwFileAttributes As Long, psfi As SHFILEINFO, _
 ByVal cbFileInfo As Long, ByVal uFlags As Long) As Long

Declare Function SHGetNewLinkInfo Lib "shell32.dll" Alias _
 "SHGetNewLinkInfoA" (ByVal pszLinkto As String, _
 ByVal pszDir As String, ByVal pszName As String, _
 pfMustCopy As Long, ByVal uFlags As Long) As Long

Public Const SHGNLI_PIDL = &H1 ' pszLinkTo is a pidl
Public Const SHGNLI_PREFIXNAME = &H2' Make name "Shortcut to xxx"

' // End SHGetFileInfo

'Get the menu handle
Declare Function GetMenu Lib "user32" (ByVal hwnd As Long) As Long
Declare Function GetSubMenu Lib "user32" (ByVal hMenu As Long, _
 ByVal nPos As Long) As Long
'make it pop up
Declare Function TrackPopupMenu Lib "user32" (_
ByVal hMenu As Long, ByVal wFlags As Long, _
 ByVal x As Long, ByVal y As Long, _
 ByVal nReserved As Long, ByVal hwnd As Long, lpRect As Any) As Long
' Flags for TrackPopupMenu
Public Const TPM_LEFTBUTTON = &H0&
Public Const TPM_RIGHTBUTTON = &H2&
Public Const TPM_LEFTALIGN = &H0&
Public Const TPM_CENTERALIGN = &H4&
Public Const TPM_RIGHTALIGN = &H8&

Type RECT
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
End Type
Declare Function FindWindow Lib "user32" Alias "FindWindowA" (_
ByVal lpClassName As Any, ByVal lpWindowName As Any) As Long
Declare Function GetWindowRect Lib "user32" (ByVal hwnd As Long, _
 lpRect As RECT) As Long

'Tray messages
Public Const TRAY_MSG_MOUSEMOVE = 7680
Public Const TRAY_MSG_LEFTBTN_DOWN = 7695
Public Const TRAY_MSG_LEFTBTN_UP = 7710
Public Const TRAY_MSG_LEFTBTN_DBLCLICK = 7725
Public Const TRAY_MSG_RIGHTBTN_DOWN = 7740
Public Const TRAY_MSG_RIGHTBTN_UP = 7755
Public Const TRAY_MSG_RIGHTBTN_DBLCLICK = 7770

Dim IconIndex As Integer, IntDown As Integer
Sub MyPopupmenu(x As Integer, y As Integer)
 hMenu = GetMenu(Form2.hwnd)
 hSubMenu = GetSubMenu(hMenu, 0)
 hTray = FindWindow("Shell_TrayWnd", 0&)
 If hTray > 0 Then

 Dim TrayRect As RECT
 Result = GetWindowRect(hTray, TrayRect)
 lResult = TrackPopupMenu(hSubMenu, TPM_RIGHTALIGN,
TrayRect.Right, TrayRect.Bottom, 0&, Form2.hwnd, ByVal 0&)
 End If
End Sub

Private Sub cmdChangeTip_Click()

 Dim iData As NOTIFYICONDATA
 iData.cbSize = Len(iData)
 iData.hwnd = Picture1.hwnd
 iData.uID = 9999
 iData.uFlags = NIF_TIP
 iData.szTip = (txtTip.Text) & Chr$(0)

 Result = Shell_NotifyIcon(NIM_MODIFY, iData)

End Sub

Private Sub cmdClose_Click()

 Me.Hide

End Sub

Private Sub cmdUnload_Click()

 Unload Me

End Sub

Private Sub Form_Load()
' VB4 Tray
' Code sample for Visual Basic 4
' Copyright © 1996 by David Warren
'
 Dim iData As NOTIFYICONDATA

 iData.cbSize = Len(iData)
 iData.hwnd = Picture1.hwnd
 iData.uID = 9999
 iData.uFlags = NIF_MESSAGE + NIF_ICON + NIF_TIP
 iData.uCallbackMessage = WM_LBUTTONDOWN
 iData.hIcon = Image1(0).Picture
 iData.szTip = Text2.Text & Chr$(0)

 Result = Shell_NotifyIcon(NIM_ADD, iData)
 Me.Hide
End Sub

Private Sub Form_Unload(Cancel As Integer)

 Dim iData As NOTIFYICONDATA

 iData.cbSize = Len(iData)
 iData.hwnd = Picture1.hwnd
 iData.uID = 9999

 Result = Shell_NotifyIcon(NIM_DELETE, iData)

 End

End Sub

Private Sub Image1_Click(Index As Integer)

 Option1(Index).Value = True

End Sub

Private Sub Option1_Click(Index As Integer)
 Dim iData As NOTIFYICONDATA
 IconIndex = Index
 iData.cbSize = Len(iData)
 iData.hwnd = Picture1.hwnd
 iData.uID = 9999
 iData.uFlags = NIF_ICON
 iData.uCallbackMessage = WM_LBUTTONDOWN
 iData.hIcon = Image1(IconIndex).Picture

 Result = Shell_NotifyIcon(NIM_MODIFY, iData)

End Sub

Private Sub Picture1_MouseDown(Button As Integer, Shift As Integer, x
As Single, y As Single)

 Select Case x
 Case TRAY_MSG_MOUSEMOVE

 Case TRAY_MSG_LEFTBTN_DOWN

 Case TRAY_MSG_LEFTBTN_UP
 MyPopupmenu (x), (y)
 Case TRAY_MSG_LEFTBTN_DBLCLICK
 Me.Show
 Me.SetFocus
 Case TRAY_MSG_RIGHTBTN_DOWN

 Case TRAY_MSG_RIGHTBTN_UP
 MyPopupmenu (x), (y)
 Case TRAY_MSG_RIGHTBTN_DBLCLICK

 End Select

End Sub

Private Sub Timer1_Timer()

 Dim iData As NOTIFYICONDATA
 If Check1.Value = 1 Then
 iData.cbSize = Len(iData)
 iData.hwnd = Picture1.hwnd
 iData.uID = 9999
 If FlashOn Then
 FlashOn = False
 iData.uFlags = NIF_ICON
 iData.hIcon = Image2.Picture
 Result = Shell_NotifyIcon(NIM_MODIFY, iData)

 Else
 iData.uFlags = NIF_ICON
 iData.hIcon = Image1(IconIndex).Picture
 Result = Shell_NotifyIcon(NIM_MODIFY, iData)
 FlashOn = True
 End If
 Else
 If FlashOn = False Then

 iData.cbSize = Len(iData)
 iData.hwnd = Picture1.hwnd
 iData.uID = 9999
 iData.uFlags = NIF_ICON
 iData.hIcon = Image1(IconIndex).Picture
 Result = Shell_NotifyIcon(NIM_MODIFY, iData)
 FlashOn = True
 End If
 End If
End Sub

Sub GeneralMessage()

 MsgBox "Menu functionality is contained in Form2"
End Sub

Private Sub mOpen_Click()
 Form1.Show
End Sub

Private Sub mOpt1_Click()
 GeneralMessage
 End Sub

Private Sub mOpt2_Click()
 GeneralMessage

End Sub

Private Sub mOpt3_Click()
 GeneralMessage
End Sub

Private Sub mRemove_Click()
 Unload Form1
End Sub

(Pop Up) ²k®´] ºBµ±®« -9

' Textmenu sample by Matt Hart - vbhelp@matthart.com
' http://matthart.com

Option Explicit

Public Const GWL_WNDPROC = (-4)
Declare Function SetWindowLong Lib "user32" Alias "SetWindowLongA" _
 (ByVal hwnd As Long, ByVal nIndex As Long, ByVal dwNewLong _
 As Long) As Long
Declare Function CallWindowProc Lib "user32" Alias
"CallWindowProcA" _
 (ByVal lpPrevWndFunc As Long, ByVal hwnd As Long, _
 ByVal Msg As Long, ByVal wParam As Long, _
 ByVal lParam As Long) As Long
Declare Sub CopyMemory Lib "kernel32" Alias "RtlMoveMemory" _
 (hpvDest As Any, hpvSource As Any, ByVal cbCopy As Long)

Public Const WM_MOUSEACTIVATE = &H21
Public Const WM_RBUTTONDOWN = &H204

Public origWndProc As Long

Public Sub SetHook(hwnd, bSet As Boolean)
 If bSet Then
 origWndProc = SetWindowLong(hwnd, GWL_WNDPROC, _
 AddressOf AppWndProc)
 ElseIf origWndProc Then
 Dim lRet As Long
 lRet = SetWindowLong(hwnd, GWL_WNDPROC, origWndProc)
 End If
End Sub

mailto:vbhelp@matthart.com
http://matthart.com

Public Function AppWndProc(ByVal hwnd As Long, _
 ByVal Msg As Long, ByVal wParam As Long, _
 ByVal lParam As Long) As Long
 Select Case Msg
 Case WM_MOUSEACTIVATE
 Dim C As Integer
 Call CopyMemory(C, ByVal VarPtr(lParam) + 2, 2)
 If C = WM_RBUTTONDOWN Then
 Form1.PopupMenu Form1.mnuBP
 SendKeys "{ESC}"
 End If
 End Select
 AppWndProc = CallWindowProc(origWndProc, hwnd, Msg, _
 wParam, lParam)
End Function

: ¤BX«

Option Explicit

'
' This sample shows how to subclass a text box and replace its
' default right-click edit menu with one of your own.

Private Sub Form_Load()
 Call SetHook(Text1.hwnd, True)
End Sub

Private Sub Form_QueryUnload(Cancel As Integer, _
 UnloadMode As Integer)
 Call SetHook(Text1.hwnd, False)
End Sub

Private Sub mnuPrint_Click()
 MsgBox "Print!"
End Sub

: é]Ao« ° éMB®«

http://vbaccelerator.com/
http://www.vb-world.net/
http://www.vb-helper.com/HowTo/
http://matthart.com/
http://www.domaindlx.com/e_morcillo/
http://www.acky.net/
http://business.vsnl.com/rationalbrains/index.html

http://vbaccelerator.com/
http://www.vb-world.net/
http://www.vb-helper.com/HowTo/
http://matthart.com/
http://www.domaindlx.com/e_morcillo/
http://www.acky.net/
http://business.vsnl.com/rationalbrains/index.html

